36 research outputs found

    Superposition for Lambda-Free Higher-Order Logic

    Get PDF
    We introduce refutationally complete superposition calculi for intentional and extensional clausal λ\lambda-free higher-order logic, two formalisms that allow partial application and applied variables. The calculi are parameterized by a term order that need not be fully monotonic, making it possible to employ the λ\lambda-free higher-order lexicographic path and Knuth-Bendix orders. We implemented the calculi in the Zipperposition prover and evaluated them on Isabelle/HOL and TPTP benchmarks. They appear promising as a stepping stone towards complete, highly efficient automatic theorem provers for full higher-order logic

    Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

    Get PDF
    International audienceDecades of work have gone into developing efficient proof calculi, data structures, algorithms, and heuristics for first-order automatic theorem proving. Higher-order provers lag behind in terms of efficiency. Instead of developing a new higher-order prover from the ground up, we propose to start with the state-of-the-art superposition prover E and gradually enrich it with higher-order features. We explain how to extend the prover’s data structures, algorithms, and heuristics to λ\lambda λ -free higher-order logic, a formalism that supports partial application and applied variables. Our extension outperforms the traditional encoding and appears promising as a stepping stone toward full higher-order logic

    Formal Model-Based Assurance Cases in Isabelle/SACM : An Autonomous Underwater Vehicle Case Study

    Get PDF
    Isabelle/SACM is a tool for automated construction of model-based assurance cases with integrated formal methods, based on the Isabelle proof assistant. Assurance cases show how a system is safe to operate, through a human comprehensible argument demonstrating that the requirements are satisfied, using evidence of various provenances. They are usually required for certification of critical systems, often with evidence that originates from formal methods. Automating assurance cases increases rigour, and helps with maintenance and evolution. In this paper we apply Isabelle/SACM to a fragment of the assurance case for an autonomous underwater vehicle demonstrator. We encode the metric unit system (SI) in Isabelle, to allow modelling requirements and state spaces using physical units. We develop a behavioural model in the graphical RoboChart state machine language, embed the artifacts into Isabelle/SACM, and use it to demonstrate satisfaction of the requirements

    Extending SMT Solvers to Higher-Order Logic

    Get PDF
    International audienceSMT solvers have throughout the years been able to cope with increasingly expressive formulas, from ground logics to full first-order logic (FOL). In contrast, the extension of SMT solvers to higher-order logic (HOL) is mostly un-explored. We propose a pragmatic extension for SMT solvers to support HOL reasoning natively without compromising performance on FOL reasoning, thus leveraging the extensive research and implementation efforts dedicated to efficient SMT solving. We show how to generalize data structures and the ground decision procedure to support partial applications and extensionality, as well as how to reconcile quantifier instantiation techniques with higher-order variables. We also discuss a separate approach for redesigning an HOL SMT solver from the ground up via new data structures and algorithms. We apply our pragmatic extension to the CVC4 SMT solver and discuss a redesign of the veriT SMT solver. Our evaluation shows they are competitive with state-of-the-art HOL provers and often outperform the traditional encoding into FOL

    Isabelle/SACM: Computer-Assisted Assurance Cases with Integrated Formal Methods

    Get PDF
    Assurance cases (ACs) are often required to certify critical systems. The use of integrated formal methods (FMs) in assurance can improve automation, increase confidence, and overcome errant reasoning. However, ACs can rarely be fully formalised, as the use of FMs is contingent on models that are validated by informal processes. Consequently, assurance techniques should support both formal and informal artifacts, with explicated inferential links between them. In this paper, we contribute a formal machine-checked interactive language for the computer-assisted construction of ACs called Isabelle/SACM. The framework guarantees well-formedness, consistency, and traceability of ACs, and allows a tight integration of formal and informal evidence of various provenance. To validate Isabelle/SACM, we present a novel formalisation of the Tokeneer benchmark, verify its security requirements, and form a mechanised AC that combines the resulting formal and informal artifacts

    Superposition with Datatypes and Codatatypes

    Get PDF
    The absence of a finite axiomatization of the first-order theory of datatypes and codatatypes represents a challenge for automatic theorem provers. We propose two approaches to reason by saturation in this theory: one is a conservative theory extension with a finite number of axioms; the other is an extension of the superposition calculus, in conjunction with axioms. Both techniques are refutationally complete with respect to nonstandard models of datatypes and nonbranching codatatypes. They take into account the acyclicity of datatype values and the existence and uniqueness of cyclic codatatype values. We implemented them in the first-order prover Vampire and compare them experimentally

    Superposition with Datatypes and Codatatypes

    Get PDF
    International audienceThe absence of a finite axiomatization of the first-order theory of data-types and codatatypes represents a challenge for automatic theorem provers. We propose two approaches to reason by saturation in this theory: one is a conservative theory extension with a finite number of axioms; the other is an extension of the superposition calculus, in conjunction with axioms. Both techniques are refutationally complete with respect to nonstandard models of datatypes and non-branching codatatypes. They take into account the acyclicity of datatype values and the existence and uniqueness of cyclic codatatype values. We implemented them in the first-order prover Vampire and compare them experimentally
    corecore